maxframe.tensor.sinh#
- maxframe.tensor.sinh(x, out=None, where=None, **kwargs)[source]#
Hyperbolic sine, element-wise.
Equivalent to
1/2 * (mt.exp(x) - mt.exp(-x))
or-1j * mt.sin(1j*x)
.- Parameters:
x (array_like) – Input tensor.
out (Tensor, None, or tuple of Tensor and None, optional) – A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated tensor is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs.
where (array_like, optional) – Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone.
**kwargs
- Returns:
y – The corresponding hyperbolic sine values.
- Return type:
Tensor
Notes
If out is provided, the function writes the result into it, and returns a reference to out. (See Examples)
References
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York, NY: Dover, 1972, pg. 83.
Examples
>>> import maxframe.tensor as mt
>>> mt.sinh(0).execute() 0.0 >>> mt.sinh(mt.pi*1j/2).execute() 1j >>> mt.sinh(mt.pi*1j).execute() # (exact value is 0) 1.2246063538223773e-016j >>> # Discrepancy due to vagaries of floating point arithmetic.
>>> # Example of providing the optional output parameter >>> out1 = mt.zeros(1) >>> out2 = mt.sinh([0.1], out1) >>> out2 is out1 True
>>> # Example of ValueError due to provision of shape mis-matched `out` >>> mt.sinh(mt.zeros((3,3)),mt.zeros((2,2))).execute() Traceback (most recent call last): ... ValueError: operators could not be broadcast together with shapes (3,3) (2,2)