maxframe.dataframe.DataFrame.sort_values#
- DataFrame.sort_values(by, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last', ignore_index=False, parallel_kind='PSRS', psrs_kinds=None)#
Sort by the values along either axis.
- Parameters:
df (MaxFrame DataFrame) – Input dataframe.
by (str) – Name or list of names to sort by.
axis (%(axes_single_arg)s, default 0) – Axis to be sorted.
ascending (bool or list of bool, default True) – Sort ascending vs. descending. Specify list for multiple sort orders. If this is a list of bools, must match the length of the by.
inplace (bool, default False) – If True, perform operation in-place.
kind ({'quicksort', 'mergesort', 'heapsort'}, default 'quicksort') – Choice of sorting algorithm. See also ndarray.np.sort for more information. mergesort is the only stable algorithm. For DataFrames, this option is only applied when sorting on a single column or label.
na_position ({'first', 'last'}, default 'last') – Puts NaNs at the beginning if first; last puts NaNs at the end.
ignore_index (bool, default False) – If True, the resulting axis will be labeled 0, 1, …, n - 1.
parallel_kind ({'PSRS'}, default 'PSRS') – Parallel sorting algorithm, for the details, refer to: http://csweb.cs.wfu.edu/bigiron/LittleFE-PSRS/build/html/PSRSalgorithm.html
- Returns:
sorted_obj – DataFrame with sorted values if inplace=False, None otherwise.
- Return type:
DataFrame or None
Examples
>>> import maxframe.dataframe as md >>> df = md.DataFrame({ ... 'col1': ['A', 'A', 'B', np.nan, 'D', 'C'], ... 'col2': [2, 1, 9, 8, 7, 4], ... 'col3': [0, 1, 9, 4, 2, 3], ... }) >>> df.execute() col1 col2 col3 0 A 2 0 1 A 1 1 2 B 9 9 3 NaN 8 4 4 D 7 2 5 C 4 3
Sort by col1
>>> df.sort_values(by=['col1']).execute() col1 col2 col3 0 A 2 0 1 A 1 1 2 B 9 9 5 C 4 3 4 D 7 2 3 NaN 8 4
Sort by multiple columns
>>> df.sort_values(by=['col1', 'col2']).execute() col1 col2 col3 1 A 1 1 0 A 2 0 2 B 9 9 5 C 4 3 4 D 7 2 3 NaN 8 4
Sort Descending
>>> df.sort_values(by='col1', ascending=False).execute() col1 col2 col3 4 D 7 2 5 C 4 3 2 B 9 9 0 A 2 0 1 A 1 1 3 NaN 8 4