maxframe.dataframe.DataFrame.transform#
- DataFrame.transform(func, axis=0, *args, dtypes=None, skip_infer=False, **kwargs)#
Call
func
on self producing a DataFrame with transformed values.Produced DataFrame will have same axis length as self.
- Parameters:
func (function, str, list or dict) –
Function to use for transforming the data. If a function, must either work when passed a DataFrame or when passed to DataFrame.apply.
Accepted combinations are:
function
string function name
list of functions and/or function names, e.g.
[np.exp. 'sqrt']
dict of axis labels -> functions, function names or list of such.
axis ({0 or 'index', 1 or 'columns'}, default 0) – If 0 or ‘index’: apply function to each column. If 1 or ‘columns’: apply function to each row.
dtypes (Series, default None) – Specify dtypes of returned DataFrames. See Notes for more details.
skip_infer (bool, default False) – Whether infer dtypes when dtypes or output_type is not specified.
*args – Positional arguments to pass to func.
**kwargs – Keyword arguments to pass to func.
- Returns:
A DataFrame that must have the same length as self.
- Return type:
:raises ValueError : If the returned DataFrame has a different length than self.:
See also
DataFrame.agg
Only perform aggregating type operations.
DataFrame.apply
Invoke function on a DataFrame.
Notes
When deciding output dtypes and shape of the return value, MaxFrame will try applying
func
onto a mock DataFrame and the apply call may fail. When this happens, you need to specify a list or a pandas Series asdtypes
of output DataFrame.Examples
>>> import maxframe.tensor as mt >>> import maxframe.dataframe as md >>> df = md.DataFrame({'A': range(3), 'B': range(1, 4)}) >>> df.execute() A B 0 0 1 1 1 2 2 2 3 >>> df.transform(lambda x: x + 1).execute() A B 0 1 2 1 2 3 2 3 4