maxframe.dataframe.Series.mf.flatjson#
- Series.mf.flatjson(query_paths: List[str], dtypes=None, dtype=None, name: str = None) DataFrame #
Flat JSON object in the series to a dataframe according to JSON query.
- Parameters:
series (Series) – The series of json strings.
query_paths (List[str] or str) – The JSON query paths for each generated column. The path format should follow [RFC9535](https://datatracker.ietf.org/doc/rfc9535/).
dtypes (Series, default None) – Specify dtypes of returned DataFrame. Can’t work with dtype.
dtype (numpy.dtype, default None) – Specify dtype of returned Series. Can’t work with dtypes.
name (str, default None) – Specify name of the returned Series.
- Returns:
Result of DataFrame when dtypes specified, else Series.
- Return type:
Examples
>>> import maxframe.dataframe as md >>> import pandas as pd >>> s = md.Series( ... [ ... '{"age": 24, "gender": "male", "graduated": false}', ... '{"age": 25, "gender": "female", "graduated": true}', ... ] ... ) >>> s.execute() 0 {"age": 24, "gender": "male", "graduated": false} 1 {"age": 25, "gender": "female", "graduated": true} dtype: object
>>> df = s.mf.flatjson( ... ["$.age", "$.gender", "$.graduated"], ... dtypes=pd.Series(["int32", "object", "bool"], index=["age", "gender", "graduated"]), ... ) >>> df.execute() age gender graduated 0 24 male True 1 25 female True
>>> s2 = s.mf.flatjson("$.age", name="age", dtype="int32") >>> s2.execute() 0 24 1 25 Name: age, dtype: int32