maxframe.tensor.argmin#
- maxframe.tensor.argmin(a, axis=None, out=None)[source]#
Returns the indices of the minimum values along an axis.
- Parameters:
a (array_like) – Input tensor.
axis (int, optional) – By default, the index is into the flattened tensor, otherwise along the specified axis.
out (Tensor, optional) – If provided, the result will be inserted into this tensor. It should be of the appropriate shape and dtype.
- Returns:
index_array – Tensor of indices into the tensor. It has the same shape as a.shape with the dimension along axis removed.
- Return type:
Tensor of ints
See also
Tensor.argmin
,argmax
amin
The minimum value along a given axis.
unravel_index
Convert a flat index into an index tuple.
Notes
In case of multiple occurrences of the minimum values, the indices corresponding to the first occurrence are returned.
Examples
>>> import maxframe.tensor as mt
>>> a = mt.arange(6).reshape(2,3) >>> a.execute() array([[0, 1, 2], [3, 4, 5]]) >>> mt.argmin(a).execute() 0 >>> mt.argmin(a, axis=0).execute() array([0, 0, 0]) >>> mt.argmin(a, axis=1).execute() array([0, 0])
Indices of the minimum elements of a N-dimensional tensor:
>>> ind = mt.unravel_index(mt.argmin(a, axis=None), a.shape) >>> ind.execute() (0, 0) >>> a[ind] # TODO(jisheng): accomplish when fancy index on tensor is supported
>>> b = mt.arange(6) >>> b[4] = 0 >>> b.execute() array([0, 1, 2, 3, 0, 5]) >>> mt.argmin(b).execute() # Only the first occurrence is returned. 0