maxframe.tensor.argmin#

maxframe.tensor.argmin(a, axis=None, out=None)[source]#

Returns the indices of the minimum values along an axis.

Parameters:
  • a (array_like) – Input tensor.

  • axis (int, optional) – By default, the index is into the flattened tensor, otherwise along the specified axis.

  • out (Tensor, optional) – If provided, the result will be inserted into this tensor. It should be of the appropriate shape and dtype.

Returns:

index_array – Tensor of indices into the tensor. It has the same shape as a.shape with the dimension along axis removed.

Return type:

Tensor of ints

See also

Tensor.argmin, argmax

amin

The minimum value along a given axis.

unravel_index

Convert a flat index into an index tuple.

Notes

In case of multiple occurrences of the minimum values, the indices corresponding to the first occurrence are returned.

Examples

>>> import maxframe.tensor as mt
>>> a = mt.arange(6).reshape(2,3)
>>> a.execute()
array([[0, 1, 2],
       [3, 4, 5]])
>>> mt.argmin(a).execute()
0
>>> mt.argmin(a, axis=0).execute()
array([0, 0, 0])
>>> mt.argmin(a, axis=1).execute()
array([0, 0])

Indices of the minimum elements of a N-dimensional tensor:

>>> ind = mt.unravel_index(mt.argmin(a, axis=None), a.shape)
>>> ind.execute()
(0, 0)
>>> a[ind]  # TODO(jisheng): accomplish when fancy index on tensor is supported
>>> b = mt.arange(6)
>>> b[4] = 0
>>> b.execute()
array([0, 1, 2, 3, 0, 5])
>>> mt.argmin(b).execute()  # Only the first occurrence is returned.
0