maxframe.dataframe.Series.value_counts#
- Series.value_counts(normalize=False, sort=True, ascending=False, bins=None, dropna=True, method='auto')#
Return a Series containing counts of unique values.
The resulting object will be in descending order so that the first element is the most frequently-occurring element. Excludes NA values by default.
- Parameters:
normalize (bool, default False) – If True then the object returned will contain the relative frequencies of the unique values.
sort (bool, default True) – Sort by frequencies.
ascending (bool, default False) – Sort in ascending order.
bins (int, optional) – Rather than count values, group them into half-open bins, a convenience for
pd.cut
, only works with numeric data.dropna (bool, default True) – Don’t include counts of NaN.
method (str, default 'auto') – ‘auto’, ‘shuffle’, or ‘tree’, ‘tree’ method provide a better performance, while ‘shuffle’ is recommended if aggregated result is very large, ‘auto’ will use ‘shuffle’ method in distributed mode and use ‘tree’ in local mode.
- Return type:
See also
Series.count
Number of non-NA elements in a Series.
DataFrame.count
Number of non-NA elements in a DataFrame.
Examples
>>> import maxframe.dataframe as md >>> import numpy as np >>> s = md.Series([3, 1, 2, 3, 4, np.nan]) >>> s.value_counts().execute() 3.0 2 4.0 1 2.0 1 1.0 1 dtype: int64
With normalize set to True, returns the relative frequency by dividing all values by the sum of values.
>>> s = md.Series([3, 1, 2, 3, 4, np.nan]) >>> s.value_counts(normalize=True).execute() 3.0 0.4 4.0 0.2 2.0 0.2 1.0 0.2 dtype: float64
dropna
With dropna set to False we can also see NaN index values.
>>> s.value_counts(dropna=False).execute() 3.0 2 NaN 1 4.0 1 2.0 1 1.0 1 dtype: int64