maxframe.dataframe.DataFrame.set_index#
- DataFrame.set_index(keys, drop=True, append=False, inplace=False, verify_integrity=False)#
Set the DataFrame index using existing columns.
Set the DataFrame index (row labels) using one or more existing columns. The index can replace the existing index or expand on it.
- Parameters:
keys (label or array-like or list of labels) – This parameter can be either a single column key, or a list containing column keys.
drop (bool, default True) – Delete columns to be used as the new index.
append (bool, default False) – Whether to append columns to existing index.
inplace (bool, default False) – If True, modifies the DataFrame in place (do not create a new object).
verify_integrity (bool, default False) – Check the new index for duplicates. Otherwise defer the check until necessary. Setting to False will improve the performance of this method.
- Returns:
Changed row labels or None if
inplace=True
.- Return type:
DataFrame or None
See also
DataFrame.reset_index
Opposite of set_index.
DataFrame.reindex
Change to new indices or expand indices.
DataFrame.reindex_like
Change to same indices as other DataFrame.
Examples
>>> import maxframe.dataframe as md
>>> df = md.DataFrame({'month': [1, 4, 7, 10], ... 'year': [2012, 2014, 2013, 2014], ... 'sale': [55, 40, 84, 31]}) >>> df month year sale 0 1 2012 55 1 4 2014 40 2 7 2013 84 3 10 2014 31
Set the index to become the ‘month’ column:
>>> df.set_index('month') year sale month 1 2012 55 4 2014 40 7 2013 84 10 2014 31
Create a MultiIndex using columns ‘year’ and ‘month’:
>>> df.set_index(['year', 'month']) sale year month 2012 1 55 2014 4 40 2013 7 84 2014 10 31