maxframe.learn.contrib.llm.multi_modal.generate#
- maxframe.learn.contrib.llm.multi_modal.generate(data, model: MultiModalLLM, prompt_template: Dict[str, Any], params: Dict[str, Any] = None)[source]#
Generate text with multi model llm based on given data and prompt template.
- Parameters:
data (DataFrame or Series) – Input data used for generation. Can be maxframe DataFrame, Series that contain text to be processed.
model (MultiModalLLM) – Language model instance support MultiModal inputs used for text generation.
prompt_template (List[Dict[str, List[Dict[str, str]]]]) –
List of message with column names as placeholders. Each message contains a role and content. Content is a list of dict, each dict contains a text or image, the value can reference column data from input.
Here is an example of prompt template.
[ { "role": "<role>", # e.g. "user" or "assistant" "content": [ { # At least one of these fields is required "image": "<image_data_url>", # optional "text": "<prompt_text_template>" # optional }, ... ] } ]
Where:
text
can be a Python format string using column names from input data as parameters (e.g."{column_name}"
)image
should be a DataURL string following RFC2397 standard with format.
data:<mime_type>[;base64],<column_name>
- paramsDict[str, Any], optional
Additional parameters for generation configuration, by default None. Can include settings like temperature, max_tokens, etc.
- Returns:
Generated text raw response and success status. If the success is False, the generated text will return the error message.
- Return type:
Notes
The
api_key_resource
parameter should reference a text file resource in MaxCompute that contains only your DashScope API key.Using DashScope services requires enabling public network access for your MaxCompute project. This can be configured through the MaxCompute console by enabling the Internet access feature for your project. Without this configuration, the API calls to DashScope will fail due to network connectivity issues.
Examples
You can initialize a DashScope multi-modal model (such as qwen-vl-max) by providing a model name and an
api_key_resource
. Theapi_key_resource
is a MaxCompute resource name that points to a text file containing a DashScope API key.>>> from maxframe.learn.contrib.llm.models.dashscope import DashScopeMultiModalLLM >>> import maxframe.dataframe as md >>> >>> model = DashScopeMultiModalLLM( ... name="qwen-vl-max", ... api_key_resource="<api-key-resource-name>" ... )
We use Data Url Schema to provide multi modal input in prompt template, here is an example to fill in the image from table.
Assuming you have a MaxCompute table with two columns:
image_id
(as the index) andencoded_image_data_base64
(containing Base64 encoded image data), you can construct a prompt message template as follows:>>> df = md.read_odps_table("image_content", index_col="image_id")
>>> prompt_template = [ ... { ... "role": "user", ... "content": [ ... { ... "image": "_image_data_base64", ... }, ... { ... "text": "Analyze this image in detail", ... }, ... ], ... }, ... ] >>> result = model.generate(df, prompt_template) >>> result.execute()