maxframe.dataframe.DataFrame.drop#
- DataFrame.drop(labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors='raise')#
Drop specified labels from rows or columns.
Remove rows or columns by specifying label names and corresponding axis, or by specifying directly index or column names. When using a multi-index, labels on different levels can be removed by specifying the level.
- Parameters:
labels (single label or list-like) – Index or column labels to drop.
axis ({0 or 'index', 1 or 'columns'}, default 0) – Whether to drop labels from the index (0 or ‘index’) or columns (1 or ‘columns’).
index (single label or list-like) – Alternative to specifying axis (
labels, axis=0
is equivalent toindex=labels
).columns (single label or list-like) – Alternative to specifying axis (
labels, axis=1
is equivalent tocolumns=labels
).level (int or level name, optional) – For MultiIndex, level from which the labels will be removed.
inplace (bool, default False) – If True, do operation inplace and return None.
errors ({'ignore', 'raise'}, default 'raise') – If ‘ignore’, suppress error and only existing labels are dropped. Note that errors for missing indices will not raise.
- Returns:
DataFrame without the removed index or column labels.
- Return type:
- Raises:
KeyError – If any of the labels is not found in the selected axis.
See also
DataFrame.loc
Label-location based indexer for selection by label.
DataFrame.dropna
Return DataFrame with labels on given axis omitted where (all or any) data are missing.
DataFrame.drop_duplicates
Return DataFrame with duplicate rows removed, optionally only considering certain columns.
Series.drop
Return Series with specified index labels removed.
Examples
>>> import numpy as np >>> import pandas as pd >>> import maxframe.dataframe as md >>> df = md.DataFrame(np.arange(12).reshape(3, 4), ... columns=['A', 'B', 'C', 'D']) >>> df.execute() A B C D 0 0 1 2 3 1 4 5 6 7 2 8 9 10 11
Drop columns
>>> df.drop(['B', 'C'], axis=1).execute() A D 0 0 3 1 4 7 2 8 11
>>> df.drop(columns=['B', 'C']).execute() A D 0 0 3 1 4 7 2 8 11
Drop a row by index
>>> df.drop([0, 1]).execute() A B C D 2 8 9 10 11
Drop columns and/or rows of MultiIndex DataFrame
>>> midx = pd.MultiIndex(levels=[['lame', 'cow', 'falcon'], ... ['speed', 'weight', 'length']], ... codes=[[0, 0, 0, 1, 1, 1, 2, 2, 2], ... [0, 1, 2, 0, 1, 2, 0, 1, 2]]) >>> df = md.DataFrame(index=midx, columns=['big', 'small'], ... data=[[45, 30], [200, 100], [1.5, 1], [30, 20], ... [250, 150], [1.5, 0.8], [320, 250], ... [1, 0.8], [0.3, 0.2]]) >>> df.execute() big small lame speed 45.0 30.0 weight 200.0 100.0 length 1.5 1.0 cow speed 30.0 20.0 weight 250.0 150.0 length 1.5 0.8 falcon speed 320.0 250.0 weight 1.0 0.8 length 0.3 0.2
>>> df.drop(index='cow', columns='small').execute() big lame speed 45.0 weight 200.0 length 1.5 falcon speed 320.0 weight 1.0 length 0.3
>>> df.drop(index='length', level=1).execute() big small lame speed 45.0 30.0 weight 200.0 100.0 cow speed 30.0 20.0 weight 250.0 150.0 falcon speed 320.0 250.0 weight 1.0 0.8