Source code for maxframe.tensor.reduction.nanargmax
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright 1999-2025 Alibaba Group Holding Ltd.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from ... import opcodes
from ...serialization.serializables import AnyField, TupleField
from .core import TensorArgReductionMixin, TensorReduction
class TensorNanArgmax(TensorReduction, TensorArgReductionMixin):
_op_type_ = opcodes.NANARGMAX
_func_name = "nanargmax"
_agg_func_name = "nanmax"
offset = AnyField("offset", default=None)
total_shape = TupleField("total_shape", default=None)
def __init__(self, dtype=None, **kw):
if dtype is None:
dtype = np.dtype(int)
super().__init__(dtype=dtype, **kw)
[docs]
def nanargmax(a, axis=None, out=None):
"""
Return the indices of the maximum values in the specified axis ignoring
NaNs. For all-NaN slices ``ValueError`` is raised. Warning: the
results cannot be trusted if a slice contains only NaNs and -Infs.
Parameters
----------
a : array_like
Input data.
axis : int, optional
Axis along which to operate. By default flattened input is used.
out : Tensor, optional
Alternate output tensor in which to place the result. The default
is ``None``; if provided, it must have the same shape as the
expected output, but the type will be cast if necessary.
See `doc.ufuncs` for details.
Returns
-------
index_array : Tensor
An tensor of indices or a single index value.
See Also
--------
argmax, nanargmin
Examples
--------
>>> import maxframe.tensor as mt
>>> a = mt.array([[mt.nan, 4], [2, 3]])
>>> mt.argmax(a).execute()
0
>>> mt.nanargmax(a).execute()
1
>>> mt.nanargmax(a, axis=0).execute()
array([1, 0])
>>> mt.nanargmax(a, axis=1).execute()
array([1, 1])
"""
op = TensorNanArgmax(axis=axis, dtype=np.dtype(int))
return op(a, out=out)