Source code for maxframe.tensor.reduction.nanargmax

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright 1999-2025 Alibaba Group Holding Ltd.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np

from ... import opcodes
from ...serialization.serializables import AnyField, TupleField
from .core import TensorArgReductionMixin, TensorReduction


class TensorNanArgmax(TensorReduction, TensorArgReductionMixin):
    _op_type_ = opcodes.NANARGMAX
    _func_name = "nanargmax"
    _agg_func_name = "nanmax"

    offset = AnyField("offset", default=None)
    total_shape = TupleField("total_shape", default=None)

    def __init__(self, dtype=None, **kw):
        if dtype is None:
            dtype = np.dtype(int)
        super().__init__(dtype=dtype, **kw)


[docs] def nanargmax(a, axis=None, out=None): """ Return the indices of the maximum values in the specified axis ignoring NaNs. For all-NaN slices ``ValueError`` is raised. Warning: the results cannot be trusted if a slice contains only NaNs and -Infs. Parameters ---------- a : array_like Input data. axis : int, optional Axis along which to operate. By default flattened input is used. out : Tensor, optional Alternate output tensor in which to place the result. The default is ``None``; if provided, it must have the same shape as the expected output, but the type will be cast if necessary. See `doc.ufuncs` for details. Returns ------- index_array : Tensor An tensor of indices or a single index value. See Also -------- argmax, nanargmin Examples -------- >>> import maxframe.tensor as mt >>> a = mt.array([[mt.nan, 4], [2, 3]]) >>> mt.argmax(a).execute() 0 >>> mt.nanargmax(a).execute() 1 >>> mt.nanargmax(a, axis=0).execute() array([1, 0]) >>> mt.nanargmax(a, axis=1).execute() array([1, 1]) """ op = TensorNanArgmax(axis=axis, dtype=np.dtype(int)) return op(a, out=out)