Source code for maxframe.tensor.arithmetic.multiply

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright 1999-2025 Alibaba Group Holding Ltd.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np

from ... import opcodes
from ..utils import infer_dtype
from .core import TensorBinOp
from .utils import arithmetic_operator


@arithmetic_operator(sparse_mode="binary_or")
class TensorMultiply(TensorBinOp):
    _op_type_ = opcodes.MUL
    _func_name = "multiply"


[docs] @infer_dtype(np.multiply) def multiply(x1, x2, out=None, where=None, **kwargs): """ Multiply arguments element-wise. Parameters ---------- x1, x2 : array_like Input arrays to be multiplied. out : Tensor, None, or tuple of Tensor and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated tensor is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs Returns ------- y : Tensor The product of `x1` and `x2`, element-wise. Returns a scalar if both `x1` and `x2` are scalars. Notes ----- Equivalent to `x1` * `x2` in terms of array broadcasting. Examples -------- >>> import maxframe.tensor as mt >>> mt.multiply(2.0, 4.0).execute() 8.0 >>> x1 = mt.arange(9.0).reshape((3, 3)) >>> x2 = mt.arange(3.0) >>> mt.multiply(x1, x2).execute() array([[ 0., 1., 4.], [ 0., 4., 10.], [ 0., 7., 16.]]) """ op = TensorMultiply(**kwargs) return op(x1, x2, out=out, where=where)
@infer_dtype(np.multiply, reverse=True) def rmultiply(x1, x2, **kwargs): op = TensorMultiply(**kwargs) return op.rcall(x1, x2)